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R K P Zia and D J Wallace 
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Received 25 March 1975, in final form 2 May 1975 

Abstract. The continuous n-component Potts model is studied in the framework of Wilson’s 
multiplicative renormalization group. Apart from the isotropic 44 interaction, there is 
another one inherent in the model for n > 2. For n 2 4, it is distinct from any 4* interaction 
that has been investigated in detail. Critical exponents are calculated. The n dependence of 
the fixed points shows new behaviour; in particular for n in the neighbourhood of five, the c 

expansion must be reformulated as a power series in c”’. 

1. Introduction 

Recently interest in the Potts (1952) model has been greatly revived, largely due to the 
controversy over the nature of the phase transition. A first analysis using Landau 
theory (see eg Landau and Lifshitz 1958) or mean-field theory (Mittag and Stephen 1974) 
suggests that the model will exhibit a first-order phase transition, essentially because 
the model permits a coupling trilinear in the magnetization variable. This conclusion 
is independent of the dimension of space d .  

Progress beyond mean-field theory has been made in three main directions. Firstly, in 
two dimensions Baxter (1973) showed that the Potts model on a square lattice has a first- 
order transition for n > 3. (We represent the lattice Potts model by an n-dimensional 
spin vector which can take n + 1 states; n = q-  1 in the more conventional notation.) 
For n < 3, the transition is of higher order. A first-order transition is expected for n 
large in all dimensions (R J Baxter, private communication). 

Secondly, there has been considerable numerical work with series expansions, 
particularly for n = 2 ,  d = 3 (Kihara er a1 1954, Straley 1974, Enting 1974; see also 
Domb 1974 and references therein). The outcome of this analysis is still not entirely 
clear ; if the system has a first-order transition for n = 2, d = 3, it must be a very small 
one. 

Thirdly, one can formulate a continuum Potts model in terms of a spin density field 
$i(x). It is far from clear that the lattice and field models will have the same phase 
transition behaviour, but the latter are of some interest in their own right, and renormal- 
ization group methods may be readily applied to them. Golner (1973) uses the approxi- 
mate recursion formula to show that the n = 2, d = 3 field model has a first-order 
transition. The exponent of the trilinear coupling at the Heisenberg fixed point has been 
calculated in the c expansion (Wegner 1972, Amit and Shcherbakov 1974 (n = 2), 
Wallace and Zia 1975a) and l /n  expansion (Wallace and Zia 1975a) and all indications 
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1496 R K P Zia and D J Wallace 

are that the trilinear coupling is relevant and produces a first-order transition in three 
dimensions. This view is disputed by Alexander (1974). 

In this paper we generalize the analysis of Amit and Shcherbakov to all n and higher 
order in 4 ~ 4 - d ) .  For n > 2 there appears a non-isotropic 44 interaction. For n 2 4, 
this interaction, together with the isotropic one, provides an excellent example of a 
multiplicatively renormalizable system distinct from the well known isotropic-hyper- 
cubic one (Wilson and Fisher 1972, Wallace 1973, Aharony 1973, Cowley and Bruce 
1973). The effect of the cubic perturbation on this ‘new’ system is also analysed. 

As a prelude to our analysis, we briefly review a representation of the Potts n- 
component lattice model. A generalization of the Ising model, the Potts model consists 
of n +  1 spin states on each lattice site with a nearest-neighbour interaction such that 
the energy is one value if the two nearest-neighbour states are different and another if 
they are the same. The spin states can be represented by a set of n + 1 vectors in n space : 
e:; a = 1,. . . n + 1, i = 1,. . . n, such that (repeated indices are summed unless specified 
otherwise) 

In (1) we have chosen the normalization of the vectors to be unity for convenience. The 
nearest-neighbour interaction term can now be written as proportional to the scalar 
product of their spin states. 

This set of e’s is in fact the set of vectors defining the n +  1 vertices of a hypertetra- 
hedron in n-dimensional space. Although we will not need an explicit form for this set 
of vectors, we will provide an example by recursion on n. Let sa be such a set of n vectors 
in n - 1 space ; then the n + 1 vectors in n space are given by 

e: = sin for a = 1,. . . , n; i = 1,. . . n-  1, 

e; =  COS^, 

el+ = 

for a = 1,. . . , n, 

with cos 8, = - l/n. The recursion may be started with n = 1, which is the Ising model. 
In our analysis we will need two simple mathematical identities : 

Lemma I. 1 e! = 0. 
a 

n+ 1 Lemma 2. eaea = -a i j .  
” n 

(3) 

(4) 

To prove lemma 1, consider the magnitude of the vector in question : 

That any n of the entire set form a complete set in n space is obvious ; so any vector Ai 
may be written as C;= ape!. Now consider 

where we have used lemma 1. Equation (4) is established since A i  is any vector. 
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We now leave the lattice model and consider the 'continuous' (or field) model which 
we derive in 0 2 and study in 9 3 in the E expansion. In 0 4 we shall discuss the implications 
of this work for the phase transition behaviour of the system. 

2. The continuum Potts model 

The partition function of the lattice Potts model discussed in 4 1 may be written as 

Z ( J )  = 1 exp( - i s i , aKurS i , r  + Ji.asi,a). 
( S i  

( 5 )  

The indices o and T are summed over all lattice sites, the index i runs over the n- 
components of the spin variable s, and the configuration sum (denoted by {s}) runs 
over the n+ 1 unit vectors e; for the spin at each lattice site. If there are only nearest- 
neighbour interactions, the symmetric coupling matrix K, ,  vanishes unless 0 and 7 are 
nearest-neighbour lattice sites. Appropriate derivatives of Z(J )  generate all correlation 
functions. 

Although much has been gleaned about the phase transition behaviour of this 
lattice model (see particularly Baxter 1973), much remains to be established; in this 
paper we study the 44 field theory obtained from (5) by a well known method (Baker 
1962, Siegert 1963, Hubbard 1972). In this method we introduce a new variable 4i,u 
with n components for each lattice site 0 and make the replacement 

I r  \ 

Here K -  is the inverse of the coupling matrix K and C is a constant; the identity is 
trivial to obtain by completing the square in the exponential on the right-hand side. 
The configuration sum in (5) is easy to perform because now the spins s at each lattice 
site are decoupled. The result may be written as 

where 

and 

V I i  . I p  = 4, , e:,, (9) 
1 

In the continuum limit the variable 4i,, becomes a field 4 i ( x ) ,  the multiple integral 
in equation (6) becomes a functional integral and the term ~ K - ' I $  in equation (6) is 
written in terms of local derivatives of the field 4 : 42, 4V24, 4V44 etc. V ( 4  + J )  repre- 
sents a local non-polynomial interaction of the field 4 with a source field J , ( x ) .  

The advantage of transforming to the field variable 4, as far as phase transition 
behaviour is concerned, is that one hopes readily to identify a small number of relevant 
couplings (for reviews see Wilson and Kogut 1974, Ma 1973, Zinn-Justin 1974). Roughly 
speaking, when the functional integral is calculated by Feynman graph expansion, the 
high powers of the field produce graphs which have well behaved low-momentum 
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behaviour and hence do not change the infrared singularities which generate critical 
exponents differing from mean-field theory. This credo is confirmed indirectly by the 
agreement between, eg, the E expansion and high-temperature series expansions (some 
results are quoted in Wilson and Kogut 1974) and explicitly to a certain extent in the 
6 expansion (Wegner 1972, Wallace and Zia 1975a). 

In this spirit we are led to consider the Euclidean field theory with a Hamiltonian 

where ro is linearly increasing with temperature and some appropriate momentum 
cut-off is understood, to reproduce the effect of the lattice in the original lattice model. 
Q and F are couplings of the form (9): 

and Si jkJ  is the symmetric coupling, 

Si jk l  = 86i jdkJ  + 2 permutations). (12) 

Although the approximations applied in obtaining equation (10) from expression 
(5) involve essentially only the neglect of what are expected to be irrelevant couplings, 
they certainly do not guarantee equivalent phase transition behaviour for the two models. 
In particular the discrepancies apparent in the two-component model (see 9 1 for refer- 
ences) may simply be due to the high powers of the field (which are neglected in (10)) 
producing an effective 43 coupling with a very small coefficient. 

With this admonition let us return to expression (10) to study it as a field theory in 
its own right. The cases n = 1 (Ising model) and n = 2 (two-component Potts model) 
are familiar. In both cases the only 44 interaction is the symmetric one ($J~)'. In the 
case n = 3, the vertices of the tetrahedron also form the body diagonals (1 ,  1, 1) 
( -  1, - 1, l), ( -  1 , 1 ,  - 1) and (1, - 1, - 1) of a cube (only half of the total number so this 
is not a decoupled Ising model-see Syozi 1972 p 325, and references therein) and the 
interactions can be represented by 414263, (42)2 and 4;'+4;+4:. Apart from the 
trilinear interaction, this is the well known symmetric/cubic system. For n 2 4, the 
model does not correspond to any other known to us ; we consider the renormalization 
of the 44 couplings and the effect of the trilinear coupling in Q 3. 

3. Critical exponents of the Potts model 

We shall first consider the restricted Potts model by which we mean the system defined 
by the Hamiltonian (10) with no trilinear coupling (qo = 0). (It corresponds to a lattice 
model with 2(n + 1 )  state vectors f e:.) To study the critical behaviour of such a system, 
the renormalization programmes of Wilson (1972) and Nickel (1975) or Brezin et a1 
(1973) and Zinn-Justin (1974) could be followed ; we choose the former. Although many 
general features of multi-component systems of this genre are known (Brezin et a1 1974, 
Wallace and Zia 1974), there are interesting new features specific to the Potts model. 
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First, we must show that our system is multiplicatively renormalizable, that is, we 
need to demonstrate 

rjf) x 6,,, (13a) 
r{;il = linear combination of s i j k l  and F~~~~ (13b) 

where is a p-spin proper vertex function. The Hamiltonian being given by (lo), both 
of these vertex functions must be formed by ‘contractions’ on all products of the three 
tensors 6,,, S,,kl and F i j k l .  Since S is formed from two 6’s, and F from contracting the 
Greek indices of four e’s  (1 l), the most general expression for r(P) is a series of contrac- 
tions (on both Latin and Greek indices) of 6’s and an even number of e’s. It is clear that 
any contraction reduces the number of e’s by zero or two. Therefore, the final result 
for must be a linear combination of a,,, eseg and C, e4 Zfl e$’ which, by the lemmas, 
satisfies (13~) .  The same argument applies to F4), the list of possible combinations 
consisting now of 66, 6ee and eeee. The first two always produce 66 (or vanish) while 
the last set will be nonzero if and only if there is one common Greek index (summed) or 
two pairs (summed); so there will be either an F or a 66. If we keep in mind that Latin 
indices must be symmetrized at the end to bring an ‘asymmetric’ combination of 66 
into S,  we see that (13b) is also satisfied. 

To obtain critical exponents, we follow standard analyses. For completeness, we 
outline the plan; 

(a) To (IO), add the counter term ir,’ and treat $ro - r)c$2 + 4~~ terms as a perturba- 
tion. Because of (13u), the susceptibility tensor xi, is of the form ~ 6 , ~ ;  choose r = 1-l 
so that r -, 0, is identified with the critical region. 

(b)  Find special values (U*,!*) of U a n d f t o  order c for which the vertex functions 
scale in the limit r --t 0: 

(14) lim F4)(ki = 0, r )  CC rfi2 
r - 0  

where U 3 ~ ~ ( 2 ~ 7 c ~ ’ ~ r ( d / 2 ) ) - ’  and similarly forf(cf Nickel 1975 equation (2.1 1)). 
(c) For each of these, determine q at O(c2) via 

( d )  Use the scaling law 

(16) r(4)(0, - 2 ~ 2  - 1 1 )  

to determine U* and f *  to O(c2). 
(e) These are used to determine other exponents to order c2.  
In principle, steps (c)  and ( d )  can be repeated to obtain q and u * , f *  to all orders, but 

we stop at 2. 
Nickel (1975) has provided all the required analytic expressions. We only need to 

calculate the weights for our system, ie the tensorial contractions. (Note that Nickel 
defines his interaction term by ~ , # ~ / 4 ;  we choose 4 !  instead of 4. With this difference 
in mind, we can always check our results against his by settingf, to zero.) Defining 

T j k l  U S i j k l + f 4 j k l  

A = ( n +  l)/n 

x (n+2)u/3+Af 
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y = (n + 8)u2i9 + 2Auf/3 + (Afin)2 (18c) 

z = 4uf/3 + A(2 - A ) f 2  

w1 = 2u2(x + 2u)/9 +zA(u/3  + A f / n 2 )  

~2 4u2f/9 + z[2~/3  + A ( A  - 2)f], 

we list the contractions corresponding to figures (la), (lb), (IC), (Id) and (le) respectively: 

Figure 1. One- and two-loop graphs for F2) and p4). 

The brackets { } in equations (20a, b, c) denote symmetrization in the indices ijkl. In 
addition to the contractions, the contributions of these graphs to the correlation func- 
tions include 4!’s and combinatorial factors: f, $,$, 2 and 3 respectively. 

Proceeding to step (b), we easily find the three sets of non-trivial (u*,f*) for which 
(14) holds : 

6) f* = 0, U* = 3c/(n+8) (214 
(W (ii) 

(2 1 c) (iii) 

As is well known, each of these special values-fixed points of a renormalization 
group transformation (Wilson 1972, Zinn-Justin 1974)-describes a different critical 
behaviour, in general. Labelling these respectively by Heisenberg (H) and Potts (PI ,  P2),  
we briefly discuss the results before continuing to step (c). 

For n = 2 (3), it can be checked that the isotropic (isotropic-cubic) systems are re- 
covered. For n = 4, from general arguments (Brezin et al 1974) H is degenerate (with P ,  
in this case). For n = 5,  PI and P, are degenerate. Next, we investigate the scaling 
behaviour at  this order in E. F4)(T*), where T* E u * S + f * F ,  scales as r r i 2 ;  this is 
guaranteed by the choice of U* and f *. For each of these special values we can find 
another (scaling) variable, 

U* = c / ( n 2  - 5n + 8) 

U* = c/(n+3). 

f* = n(n -4)c/3A(n2 - 5n + 8), 

f* = nc/3A(n + 3), 
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with the property of being an eigenperturbation and scaling as r k ' + c i 2 ,  ie 

P ~ ) ( T *  + U T )  x r c I 2 ( ~ *  +a 'Trk)+  O(a2) (23)  

where a is a small parameter and a' TC a. (We emphasize that care is required in writing 
down the structure of corrections at higher orders in E ;  one should use the general 
solution of the renormalization group equation, see eg Zinn-Justin (1974)) 

If w > 0, the system is said to be stable against the perturbation. Otherwise, as 
r + 0, the perturbation, no matter how small, eventually wins and the system crosses 
over to new behaviour. For each of (21), we list the eigenperturbations (in terms of i i / f) 
and W (defined by w = W c + 0 ( c 2 ) )  respectively: 

(H) - 3 A / ( n + 2 ) ;  (4 - n)[2(n + 811- ' (24a) 

(Pl) A ( 2 A - 3 ) ;  ( 4 - n ) ( n - 5 ) [ 6 ( n 2 - 5 n + 8 ) ] - '  (24b) 

(P2) - A 2 / 2  ; (n - 5)[6(n + 3 ) ]  - '. ( 2 4 4  

The first of these results has been discussed (Brezin et a1 1974) in general terms. As 
usual, we simply remark that degeneracy (at this order) of the special values (cf (21)) is 
related to vanishing w. O(c2) contributions, in general, split such degeneracies and 
introduce more complicated behaviour. 

The calculation of q for each of these fixed points is straightforward. In general, 
q = ( e 2 - 4 w 2 ) / 4 8 + O ( c 3 ) ,  and we list the coefficient of the c2  term: 

(H) (n  + 2)[2(n + 8)']- (25a)  

(PI 1 ( n -  l ) ( n - 2 ) ( n 2 - 6 n +  1 1 ) [ 5 4 ( n 2 - 5 n + 8 ) 2 ] - '  (25b) 

(P2) (n + l ) ( n  + 7)[54(n + 3)']-  '. (25c) 

The next stage, (d ) ,  though mathematically straightforward, produces results that 
require care in interpretation. Introducing the more compact notation g, for the 
couplings : 

g, = U g2 = f ,  (26)  

g: = h,c + I S ~ E '  + O(c3). (27) 

The first-order special values h, can be read off from (21). For each of them we have 
checked that the coefficient of the c 3  In2 r term in equation (16) is indeed the correct 
one ($) for exponentiation. The coefficient of the t3  In r term provides a linear equation 
for IS,: 

(28) 

where h, x (ii, T )  of (22), say h l  = iif of (24) and h2 = 1 ; is a function of n coming 
purely from the decomposition of (20b) (evaluated at g* = h) into h and h ;  C is the sum 

we write 

Ria ,  + Ch, + eh, = 0 

of ( q / c 2  -a) and the rest of the (206) decomposition; and R; is defined via M T  through 
(20a) : 
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Equation (23) implies that h and h are eigenvectors of R with eigenvalues 
pectively. The solution to (28) is, therefore, 

and W res- 

r ~ , ,  = - 2Ch, - (C/W)h,,. (30) 
Taking into account the weight (2) of (20b) and a factor 2 from the analytic expression, 
we give C and c in terms of h and h :  

C = [B-h,(l  -2h1)-$E2-&j/3 (31a) 

= -Bh2/3h2 (31b) 
where 

hlh’ B E ( x * / E ) ( ~  72h1) h1h2 - h,h, 
In these expressions, W is to be taken from (24) and x* is the fixed-point value of x in 
equation (18b) at order t. For the three sets of special values, we evaluate B explicitly: 

(HI ( n  + 2)’(n + 8)- ’ ( 3 3 4  

(P1) (33b) 

(PZ) 4(n + 1)’(n + 7)- ‘(n + 3)- ( 3 3 4  

(n - l)(n - 2)2(n - 3)(n2 - 6n + 1 1 ) -  ‘(n’ - 5n + 8)- ’ 

Since W vanishes for certain values of n it is clear that some singularities may occur 
in equation (30). For the n = 4 case, the problem does not arise, since vanishes either 
identically, (H), or as (n-4). (P1). The n = 5 singularity, however, is genuine. We will 
discuss this problem in 6 4 ;  for now, it suffices to take the point of view that equation (27) 
is invalid if r ~ , ,  - O( l/t). 

To complete this section, we will use equation (30) to find the exponent y and an 
exponent associated with the trilinear coupling to order e’. Following Nickel (1975) 
once more, we employ the equation 

r2,(k = 0, r )  K r1 - l ’y .  (34) 
The weights and contractions corresponding to figures (IC), (Id) and ( le)  are, respectively, 

x/2, x2/4, i [ y  + A z  + 2(n - 1)u2/9] (35) 
where A ,  x, y,  z are defined in (18). After checking exponentiation, we arrive at 

As in equation (32), x* is the value of expression (18b) at any fixed point to order t .  

Finally we ask how the restricted Potts model is perturbed by the trilinear coupling 
q 0 Q i j k 4 i 4 j ~ k  in equation (10). The effect of this perturbation is governed by the exponent 
$ associated with the three-point function l-$!({k}, r )  linear in qo : 

r$!(o, I )  a qOr$ 

in the critical region r -, 0. If the contribution of F3) in the effective potential 

1 
P. 

F ( M ,  I )  = C IMi, . . . M i p r y  .,p(O, r )  

is more singular than the terms with qo = 0, eg M’r(’)(= M’r), then qo is a relevant 
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coupling which perturbs the system away from the appropriate fixed point of the 
restricted model, presumably into a first-order phase transition. 

The exponent $ is obtained in the usual way by exponentiating logarithms in the 
graphs contributing to F3). The analytic expressions are identical to the ones used for 
F4); only a set of weights and contractions is needed. Corresponding to figures 2(a-d), 
with the common factor qo suppressed, these are : 

2, T 2 / 3 ,  3 [ y + A ( 2 - A ) ~ ] - $ 4 ' ,  2Z2/3 (37) 

where T = U + 3A(2 - A ) f / 2 .  The result may be written as 

$ = qr+(o, + t ~ ( 2 - ~ ) o ~ - 3 q 2 ) € 2 + 0 ( € 3 )  

where c1 and c2 are given for any fixed point in equations (30) to (32), and 3 is given for 
the three fixed points by 

(H) $ = 3 ( n + 8 ) - '  ( 3 9 4  

(P1) (39b) 

(P2) 9 = $ ( n + l ) ( n + 3 ) - '  (394  

3 = t<n - 2)(n - 3) (n2  - 5n + 8 ) -  

5 x 9  
Figure 2. One- and two-loop graphs for F3). 

Note that for n = 2, the interaction F44 is proportional to the isotropic term (42)2, 
and only $(H) is meaningful. The expression (39a) agrees with the results of Amit and 
Shcherbakov (1974) and is a special case contained in Wallace and Zia (1975a). Dis- 
cussion of the effect of Q43 on phase transition behaviour is deferred until 4 4. 

4. Discussion and conclusion 

We have generalized the analysis of Amit and Shcherbakov (1974) and obtained the 
effect of the trilinear coupling for the n-component Potts model in terms of the exponent 
$ (equation (38)). Tu interpret this result, we must first study the model without this 
coupling (the restricted Potts model). There, unlike the two-component case, we found 
that two 44 couplings, U and f, are necessary to describe the general system. Given n, the 
completely stable one of the three fixed points (H, P, and P2) in the U-f plane will 
control the q,, = 0 model. It is about this point that we should consider the effect of Q43 
through $. So we first examine the configuration of the three fixed points and their 
variation with n-in fact, that in its own right is of intrinsic interest and provides an 
example of the behaviour generic in the sense of catastrophe theory. (An elementary 
introduction and references are given by D R J Chillingworth in a 1973 Southampton 
University Mathematics Department preprint, Elementary Catastrophe Theory). 
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The fixed-point configuration and its variation with n is best visualized via the re- 
normalization group potential function V(u,  f )  (Wallace and Zia 1974, 1975b), of which 
the fixed points are critical points. To lowest non-trivial order, the qualitative features 
of the system are summarized by : a very strongly n-dependent fixed point (PI) and two 
relatively weakly n-dependent ones (H, P,). Defining n, to be values of n at which two 
fixed points become degenerate, we have, at this order, the following picture : 

n,(H) = 4 P, = H 

n,(P+) = n,(P-) = 5 PI = P, 
(the necessity for P, will become clear later). This variation with n is qualitatively shown 
in figure 3. A certain section of I/ is shown on figure 4 for various regions of n. 

Figure 3. Fixed points in the u-Iplane. The broken curve gives the qualitative n dependence 
of (P,) at order e .  the movement of (H) and (P2) with n is neglected for clarity. 

( d l  ( e )  

Figure 4. Qualitative form of tree and one-loop contributions to the renormalization group 
potential function V in a section along the broken curve of figure 3 for (a) n < 4, (b)  n = 4, 
(c) 4 < n < 5 ,  (d) n = 5. (e )  n > 5 .  

For n - 4, the potential function around the (most) stable fixed point behaves as 

I/ - -p3+(n-4)p2 (40) 
where p is a measure of the ‘distance’ from the stable fixed point. A generic form (in 
catastrophe theory language), on the other hand, is 

v- - p 3 + K p  (41) 
which describes critical points colliding and disappearing as K decreases through zero. If 
we cast (40) into the generic form by a displacement, we find that K K (n-4)’ so that 
fixed points may collide, but never disappear. The I I  - 5 behaviour is essentially the 
same at this order, only the ‘sign’ of p changes. 

For n close to 4 or 5,  it is reasonable to expect, therefore, higher orders to become 
important. As it turns out, the fact that (H) is guaranteed to exist at all orders implies 
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that all higher-order corrections modify essentially only the coefficient of the p 2  term in 
(40). The result is that an E expansion may be obtained for n, : 

n, = 4-2r+O(c2)  (42) 

and the behaviour remains non-generic. 

corrections to (40) of the form (2,L' - O(1) at n = 5) 
No guarantee of this nature exists for the other fixed points and, in general, we expect 

(43) v - p3 + ( n  - 5 + l'E)p* + h p .  

Casting this expression into the generic form, we see that 

ti - (n  - 5 + A'€), + i t .  (44) 

If i. > 0, ti never vanishes and the critical points never become degenerate. However, 
if i. < 0, there is a region of n around 5 such that there will be no critical points: 

(45) 

so that the 'E  expansion' of the n, is in fact in JE. Having naturally two roots, we label 
them separately : 

/ n  - 51 < J (  - A € )  + O(t) 

n,(P+) = 5+-,'(12c)+O(r). (46) 

Although this behaviour is more complicated, it is of generic form : the Heisenberg case 
is a very special one indeed. That 1 in (45) is -12 can be obtained by substituting 
n = 5 +n'Jc into equations (27) and (30) for P1,2 and demanding degeneracy. 

To summarize, we have the following picture for the 'Pottsdegeneracy'. As n increases 
through n,(P-), PI and P2 collide and disappear. In the region In- 51 < J( 1 2 ~ )  there are 
no completely stable fixed points in the U-f  plane-presumably the system has a first- 
order phase transition even if q,  = 0. As n increases through n,(P+), P, and P, reappear 
with P, being the completely stable fixed point. 

Graphically, we picture in figure 5 the two-loop contributions to V in the region 
around for n - 5. Adding this to that of figure 4 produces figure 6 which sum- 
marizes the collision-disappearance-reappearance phenomenon of fixed points. 

Figure 5. Qualitative form of the two-loop contribution to V for n in the neighbourhood of 
five. Only the region around the P,-P2 degeneracy of figure 4(d) is shown. 

Since this order of perturbation theory has produced a potential function I/ for 
which the parameter n is a control variable in a universal unfolding of the p 3  form of the 
degenerate situation, no new qualitative features will appear at higher orders in c. How- 
ever, the quantitative effects of higher-order terms must be expected to be large, because 
the expansion (46) is clearly not reliable for E = l(d = 3). 

This conclusion makes us refrain from quoting values of the exponents II/ and y as 
power series in c for low values of n (or in ,/E for n near five) and underlines the argument 
of Wilson that a quantitative description of the phase transition behaviour is more diffi- 
cult when a system has several fixed points close to one another. On the other hand, for n 
large, the fixed-point structure is unambiguous and exponents may be quoted. In that 
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Figure 6. Combined effects of figures 4 and 5 ,  illustrating the disappearance and reappearance 
of P, and P2. (a)  n < n,(P-), (b) n = n,(P-), (c) n,(P-) < n < n,(Pt), ( d )  n = n,(P+), ( e )  
n ’ nAPt). 

case, P, is the controlling fixed point. For d = 3 (to lowest order in c), q approaches the 
Ising value of while y approaches 4 (as against for Ising), showing again fundamental 
differences between the restricted Potts model and the hypercubic one. Finally, II/ 
becomes 9 (O(c2) corrections are small) so that the Q43 term is indeed relevant, and its 
effect in F ( M ,  r )  compared to the M 2 r  term diverges (as r vanishes) as r -  ‘I4. In this 
connection, we point out the significant difference between perturbing (with Q43) about 
H and Pz, the former leading to IJ - O( l /n) (equation (39a), which agrees with Opper- 
mann 1975). 

In conclusion, this analysis appears to favour a first-order transition for the standard 
Potts model, while for the restricted model such a transition is conjectured for a range 
of low n. 
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